mirror of
https://github.com/ChronosX88/mta-mono.git
synced 2024-11-24 11:12:20 +00:00
374 lines
9.5 KiB
C#
374 lines
9.5 KiB
C#
|
using System;
|
|||
|
using System.Runtime.CompilerServices;
|
|||
|
|
|||
|
namespace MultiTheftAuto
|
|||
|
{
|
|||
|
public class Vector3
|
|||
|
{
|
|||
|
public static double FLOAT_EPSILON = 0.0001;
|
|||
|
|
|||
|
public float X { get; set; }
|
|||
|
public float Y { get; set; }
|
|||
|
public float Z { get; set; }
|
|||
|
|
|||
|
public static Vector3 Back
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
return new Vector3( 0.0f, -1.0f, 0.0f );
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 Down
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
return new Vector3( 0.0f, 0.0f, -1.0f );
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 Forward
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
return new Vector3( 0.0f, 1.0f, 0.0f );
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 Left
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
return new Vector3( -1.0f, 0.0f, 0.0f );
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 One
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
return new Vector3( 1.0f, 1.0f, 1.0f );
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 Right
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
return new Vector3( 1.0f, 0.0f, 0.0f );
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 Up
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
return new Vector3( 0.0f, 0.0f, 1.0f );
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 Zero
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
return new Vector3( 0.0f, 0.0f, 0.0f );
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public float Magnitude
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
return this.LengthSquared();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public float SqrMagnitude
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
return this.Length();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public float Normalized
|
|||
|
{
|
|||
|
get
|
|||
|
{
|
|||
|
float length = this.Length();
|
|||
|
|
|||
|
if( length > Vector3.FLOAT_EPSILON )
|
|||
|
{
|
|||
|
return length;
|
|||
|
}
|
|||
|
|
|||
|
return 0.0f;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public Vector3( float fX, float fY, float fZ )
|
|||
|
{
|
|||
|
this.Set( fX, fY, fZ );
|
|||
|
}
|
|||
|
|
|||
|
public void Set( float fX, float fY, float fZ )
|
|||
|
{
|
|||
|
this.X = fX;
|
|||
|
this.Y = fY;
|
|||
|
this.Z = fZ;
|
|||
|
}
|
|||
|
|
|||
|
public float Normalize()
|
|||
|
{
|
|||
|
float fLength = this.Length();
|
|||
|
|
|||
|
if( fLength > Vector3.FLOAT_EPSILON )
|
|||
|
{
|
|||
|
this.X = this.X / fLength;
|
|||
|
this.Y = this.Y / fLength;
|
|||
|
this.Z = this.Z / fLength;
|
|||
|
|
|||
|
return fLength;
|
|||
|
}
|
|||
|
|
|||
|
return 0.0f;
|
|||
|
}
|
|||
|
|
|||
|
public Vector3 GetNormalized()
|
|||
|
{
|
|||
|
if( this.Magnitude == 0.0f )
|
|||
|
{
|
|||
|
throw new DivideByZeroException();
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
float inverse = 1.0f / this.Magnitude;
|
|||
|
|
|||
|
return new Vector3( this.X * inverse, this.Y * inverse, this.Z * inverse );
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public float Length()
|
|||
|
{
|
|||
|
return (float)Math.Sqrt( (float)this.LengthSquared() );
|
|||
|
}
|
|||
|
|
|||
|
public float LengthSquared()
|
|||
|
{
|
|||
|
return this.X * this.X + this.Y * this.Y + this.Z * this.Z;
|
|||
|
}
|
|||
|
|
|||
|
public float DotProduct( Vector3 vector )
|
|||
|
{
|
|||
|
return this.X * vector.X + this.Y * vector.Y + this.Z * vector.Z;
|
|||
|
}
|
|||
|
|
|||
|
public Vector3 Cross( Vector3 vector )
|
|||
|
{
|
|||
|
return new Vector3( this.Y * vector.Z - this.Z * vector.Y, this.Z * vector.X - this.X * vector.Z, this.X * vector.Y - this.Y * vector.X );
|
|||
|
}
|
|||
|
|
|||
|
public void CrossProduct( Vector3 vector )
|
|||
|
{
|
|||
|
float
|
|||
|
fX = this.X,
|
|||
|
fY = this.Y,
|
|||
|
fZ = this.Z;
|
|||
|
|
|||
|
this.X = fY * vector.Z - vector.Y * fZ;
|
|||
|
this.Y = fZ * vector.X - vector.Z * fX;
|
|||
|
this.Z = fX * vector.Y - vector.X * fY;
|
|||
|
}
|
|||
|
|
|||
|
public Vector3 GetTriangleNormal( Vector3 vector1, Vector3 vector2 )
|
|||
|
{
|
|||
|
return ( vector1 - this ).Cross( vector2 - this );
|
|||
|
}
|
|||
|
|
|||
|
public Vector3 GetRotation( Vector3 vector )
|
|||
|
{
|
|||
|
float fX = 0.0f;
|
|||
|
float fY = 0.0f;
|
|||
|
float fZ = ( 360.0f - ( (float)Math.Atan2( vector.X - this.X, vector.Y - this.Y ) * 180.0f / (float)Math.PI ) ) % 360.0f;
|
|||
|
|
|||
|
return new Vector3( fX, fY, fZ );
|
|||
|
}
|
|||
|
|
|||
|
public Vector3 Rotate( float angle )
|
|||
|
{
|
|||
|
angle = (float)Math.PI * angle / 180.0f;
|
|||
|
|
|||
|
return new Vector3(
|
|||
|
this.X * (float)Math.Cos( angle ) - this.Y * (float)Math.Sin( angle ),
|
|||
|
this.X * (float)Math.Sin( angle ) + this.Y * (float)Math.Cos( angle ),
|
|||
|
this.Z
|
|||
|
);
|
|||
|
}
|
|||
|
|
|||
|
public float Distance( Vector3 vector )
|
|||
|
{
|
|||
|
return ( vector - this ).Length();
|
|||
|
}
|
|||
|
|
|||
|
public float Dot( Vector3 vector )
|
|||
|
{
|
|||
|
return this.X * vector.X + this.Y * vector.Y + this.Z * vector.Z;
|
|||
|
}
|
|||
|
|
|||
|
public Vector3 Offset( float distance, float angle )
|
|||
|
{
|
|||
|
angle = (float)Math.PI * angle / 180.0f;
|
|||
|
|
|||
|
return new Vector3(
|
|||
|
this.X + ( ( (float)Math.Cos( angle ) ) * distance ),
|
|||
|
this.Y + ( ( (float)Math.Sin( angle ) ) * distance ),
|
|||
|
this.Z
|
|||
|
);
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Returns the angle in degrees between from and to.
|
|||
|
/// </summary>
|
|||
|
/// <param name="from"></param>
|
|||
|
/// <param name="to"></param>
|
|||
|
/// <returns></returns>
|
|||
|
|
|||
|
public float Angle( Vector3 to )
|
|||
|
{
|
|||
|
return ( 360.0f - ( (float)Math.Atan2( to.X - this.X, to.Y - this.Y ) * 180.0f / (float)Math.PI ) ) % 360.0f;
|
|||
|
}
|
|||
|
|
|||
|
public static float Angle( Vector3 vector1, Vector3 vector2 )
|
|||
|
{
|
|||
|
return (float)Math.Acos( vector1.GetNormalized().DotProduct( vector2.GetNormalized() ) );
|
|||
|
}
|
|||
|
|
|||
|
public Vector3 Pitch( float degree )
|
|||
|
{
|
|||
|
float x = this.X;
|
|||
|
float y = ( this.Y * (float)Math.Cos( degree ) ) - ( this.Z * (float)Math.Sin( degree ) );
|
|||
|
float z = ( this.Y * (float)Math.Sin( degree ) ) + ( this.Z * (float)Math.Cos( degree ) );
|
|||
|
|
|||
|
return new Vector3( x, y, z );
|
|||
|
}
|
|||
|
|
|||
|
public Vector3 Yaw( float degree )
|
|||
|
{
|
|||
|
float x = ( this.Z * (float)Math.Sin( degree ) ) + ( this.X * (float)Math.Cos( degree ) );
|
|||
|
float y = this.Y;
|
|||
|
float z = ( this.Z * (float)Math.Cos( degree ) ) - ( this.X * (float)Math.Sin( degree ) );
|
|||
|
|
|||
|
return new Vector3( x, y, z );
|
|||
|
}
|
|||
|
|
|||
|
public Vector3 Roll( float degree )
|
|||
|
{
|
|||
|
float x = ( this.X * (float)Math.Cos( degree ) ) - ( this.Y * (float)Math.Sin( degree ) );
|
|||
|
float y = ( this.X * (float)Math.Sin( degree ) ) + ( this.Y * (float)Math.Cos( degree ) );
|
|||
|
float z = this.Z;
|
|||
|
|
|||
|
return new Vector3( x, y, z );
|
|||
|
}
|
|||
|
|
|||
|
public bool IsBackFace( Vector3 lineOfSight )
|
|||
|
{
|
|||
|
return this.DotProduct( lineOfSight ) < 0.0f;
|
|||
|
}
|
|||
|
public bool IsPerpendicular( Vector3 vector )
|
|||
|
{
|
|||
|
return this.DotProduct( vector ) == 0.0f;
|
|||
|
}
|
|||
|
|
|||
|
public float MixedProduct( Vector3 v2, Vector3 v3 )
|
|||
|
{
|
|||
|
this.CrossProduct( v2 );
|
|||
|
|
|||
|
return this.DotProduct( v3 );
|
|||
|
}
|
|||
|
|
|||
|
public override string ToString()
|
|||
|
{
|
|||
|
return String.Format( "({0},{1},{2})", this.X, this.Y, this.Z );
|
|||
|
}
|
|||
|
|
|||
|
public bool Equals( Vector3 vector )
|
|||
|
{
|
|||
|
return this.X == vector.X && this.Y == vector.Y && this.Z == vector.Z;
|
|||
|
}
|
|||
|
|
|||
|
public override bool Equals( object o )
|
|||
|
{
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
public override int GetHashCode()
|
|||
|
{
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
#region Operators
|
|||
|
|
|||
|
public static Vector3 operator +( Vector3 vector1, Vector3 vector2 )
|
|||
|
{
|
|||
|
return new Vector3( vector1.X + vector2.X, vector1.Y + vector2.Y, vector1.Z + vector2.Z );
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 operator +( Vector3 vector, float value )
|
|||
|
{
|
|||
|
return new Vector3( vector.X + value, vector.Y + value, vector.Z + value );
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 operator -( Vector3 vector1, Vector3 vector2 )
|
|||
|
{
|
|||
|
return new Vector3( vector1.X - vector2.X, vector1.Y - vector2.Y, vector1.Z - vector2.Z );
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 operator -( Vector3 vector, float value )
|
|||
|
{
|
|||
|
return new Vector3( vector.X - value, vector.Y - value, vector.Z - value );
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 operator *( Vector3 vector1, Vector3 vector2 )
|
|||
|
{
|
|||
|
return new Vector3( vector1.X * vector2.X, vector1.Y * vector2.Y, vector1.Z * vector2.Z );
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 operator *( Vector3 vector, float value )
|
|||
|
{
|
|||
|
return new Vector3( vector.X * value, vector.Y * value, vector.Z * value );
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 operator /( Vector3 vector1, Vector3 vector2 )
|
|||
|
{
|
|||
|
return new Vector3( vector1.X / vector2.X, vector1.Y / vector2.Y, vector1.Z / vector2.Z );
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 operator /( Vector3 vector, float value )
|
|||
|
{
|
|||
|
return new Vector3( vector.X / value, vector.Y / value, vector.Z / value );
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 operator %( Vector3 vector1, Vector3 vector2 )
|
|||
|
{
|
|||
|
return new Vector3( vector1.X % vector2.X, vector1.Y % vector2.Y, vector1.Z % vector2.Z );
|
|||
|
}
|
|||
|
|
|||
|
public static Vector3 operator %( Vector3 vector, float value )
|
|||
|
{
|
|||
|
return new Vector3( vector.X % value, vector.Y % value, vector.Z % value );
|
|||
|
}
|
|||
|
|
|||
|
public static bool operator ==( Vector3 vector1, Vector3 vector2 )
|
|||
|
{
|
|||
|
return vector1.Equals( vector2 );
|
|||
|
}
|
|||
|
|
|||
|
public static bool operator !=( Vector3 vector1, Vector3 vector2 )
|
|||
|
{
|
|||
|
return !vector1.Equals( vector2 );
|
|||
|
}
|
|||
|
|
|||
|
#endregion
|
|||
|
}
|
|||
|
}
|