resistance/src/cryptocurrency_portfolio__assets_selection.py

189 lines
5.2 KiB
Python
Raw Normal View History

2022-03-29 08:42:32 +00:00
#!/usr/bin/python3
"""Crypto Currency Portfolio: Assets Selection.
Description:
Crypto Currency Selection using monte Carlo simulation.
"""
# %% Import dependencies ----
# core
import os
import gc
# data science
import pandas as pd
import numpy as np
from scipy.stats import norm
# Cloud integration
from azureml.core import Workspace, Dataset, VERSION as aml_version
print(f'Azure ML SDK v{aml_version}')
# network
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# plots
import matplotlib.pyplot as plt
import seaborn as sns
# show info about python env
from IPython import sys_info
print(sys_info())
import warnings
warnings.filterwarnings("ignore")
# %% Set params ----
symbols = ['BTCUSDT', 'ETHUSDT', 'BNBUSDT', 'SOLUSDT', 'MATICUSDT', 'UNIUSDT']
n_days = int(252) # US market has 252 trading days in a year
n_iterations = int(1e4)
# %% Load quotes ----
def get_quotes(symbol: str) -> pd.DataFrame:
df = pd.read_csv(f'https://www.cryptodatadownload.com/cdd/Binance_{symbol}_d.csv', skiprows=[0])
df = df.set_index('date')
df = df.sort_values(by = 'date')
return df[['symbol', 'open', 'high', 'low', 'close']]
quotes_data = [get_quotes(s) for s in symbols]
# row-wise union:
# pd.concat([get_quotes(s) for s in symbols])
# column-wise:
# pd.concat(list1, axis=1, ignore_index=False)
btcusdt_df = quotes_data[0]
pd.concat([
btcusdt_df['close'].head(5),
btcusdt_df['close'].tail(5)
])
# %% Calculate Return
def get_returns(close_prices) -> pd.Series:
return (close_prices/close_prices.shift()) - 1
btcusdt_df['diff'] = btcusdt_df['close'].diff()
btcusdt_df['return'] = get_returns(btcusdt_df['close'])
btcusdt_df[['close', 'diff', 'return']].tail(10)
# %% Calculate LogReturn
def get_log_returns(return_prices) -> pd.Series:
return np.log(1 + return_prices)
btcusdt_df['log_return'] = btcusdt_df['return'].apply(lambda x: get_log_returns(x))
btcusdt_df[['close', 'diff', 'return', 'log_return']].tail(10)
# %% Simulate possible LogReturns
def get_simulated_returns(log_returns: pd.Series, n_days: int, n_iterations: int) -> pd.Series:
u = log_returns.mean()
var = log_returns.var()
stdev = log_returns.std()
drift = u - (0.5*var)
Z = norm.ppf(np.random.rand(n_days, n_iterations))
return np.exp(drift + stdev*Z)
btcusd_logreturns = btcusdt_df['log_return'].dropna()
btcusd_simulated_returns = get_simulated_returns(btcusd_logreturns, n_days, n_iterations)
assert(
btcusd_simulated_returns.shape == (n_days, n_iterations)
)
# %% Monte carlo simulation functions ----
def get_breakeven_prob(predicted, threshold = 0):
"""
This function calculated the probability of a stock being above a certain threshhold, which can be defined as a value (final stock price) or return rate (percentage change)
"""
predicted0 = predicted.iloc[0,0]
predicted = predicted.iloc[-1]
predList = list(predicted)
over = [(i*100)/predicted0 for i in predList if ((i-predicted0)*100)/predicted0 >= threshold]
less = [(i*100)/predicted0 for i in predList if ((i-predicted0)*100)/predicted0 < threshold]
return (len(over)/(len(over) + len(less)))
def monte_carlo_simulation(simulated_returns: pd.Series, last_actual_price: float, n_days: int, plot=True):
# Create empty matrix
price_list = np.zeros_like(simulated_returns)
# Put the last actual price in the first row of matrix
price_list[0] = last_actual_price
# Calculate the price of each day
for t in range(1, n_days):
price_list[t] = price_list[t-1]*simulated_returns[t]
# Plot
if plot == True:
x = pd.DataFrame(price_list).iloc[-1]
fig, ax = plt.subplots(1, 2, figsize=(14,4))
sns.distplot(x, ax=ax[0])
sns.distplot(x, hist_kws={'cumulative': True}, kde_kws={'cumulative': True}, ax=ax[1])
plt.xlabel('Stock Price')
plt.show()
print(f"Investment period: {n_days-1}")
print(f"Expected Value: ${round(pd.DataFrame(price_list).iloc[-1].mean(),2)}")
print(f"Return: {round(100*(pd.DataFrame(price_list).iloc[-1].mean()-price_list[0,1])/pd.DataFrame(price_list).iloc[-1].mean(),2)}%")
print(f"Probability of Breakeven: {get_breakeven_prob(pd.DataFrame(price_list))}")
return pd.DataFrame(price_list)
# %% Run Monte carlo simulation and estimate result
simulated_prices_df = monte_carlo_simulation(
btcusd_simulated_returns,
quotes_data[0]['close'].tail(1),
n_days)
plt.figure(figsize=(10,6))
plt.plot(simulated_prices_df.iloc[:, 1:10])
plt.show()
# %% Monte Carlo simulation pipeline for multiple tokens ----
n_iterations = int(1e4) #! WARN: set simulations number
returns_data = [get_returns(df['close']) for df in quotes_data]
log_returns_data = [get_log_returns(r) for r in returns_data]
simulated_returns_data = [get_simulated_returns(lr, n_days, n_iterations) for lr in log_returns_data]
for i in range(len(simulated_returns_data)):
print(f'Starting Monte-Carlo simulation for {symbols[i]} symbol...')
prices_ms = monte_carlo_simulation(simulated_returns_data[i], quotes_data[i]['close'].tail(1), n_days, plot=True)
plt.figure(figsize=(10,6))
plt.plot(prices_ms.iloc[:, 1:50])
plt.show()