mirror of
https://github.com/codez0mb1e/resistance.git
synced 2024-11-09 12:11:02 +00:00
Minor changes
This commit is contained in:
parent
e1cd3ab1b6
commit
0da93e8fa3
@ -53,7 +53,7 @@ currencies_ds = Dataset.get_by_name(ws, name='Currencies')
|
||||
currencies_ds.to_pandas_dataframe()
|
||||
|
||||
print(f'Dataset name: {currencies_ds.name}. Description: {currencies_ds.description}.')
|
||||
print(f'Size of Azure ML dataset: {sys.getsizeof(currencies_ds)} bytes.')
|
||||
print(f'Size of Azure ML dataset object: {sys.getsizeof(currencies_ds)} bytes.')
|
||||
|
||||
|
||||
# %% Preprocessing ----
|
||||
@ -71,7 +71,7 @@ quotes_df = (currencies_ds
|
||||
.set_index('date')
|
||||
.sort_values(by='date'))
|
||||
|
||||
quotes_df.head(10)
|
||||
quotes_df
|
||||
|
||||
|
||||
# %% Discover data ----
|
||||
@ -80,35 +80,35 @@ quotes_df.groupby('symbol')['close'].agg(['count', 'last'])
|
||||
|
||||
# %% USD/RUB dataset ----
|
||||
usdrub_df = quotes_df[quotes_df.symbol == 'USD/RUB']
|
||||
|
||||
pd.concat([
|
||||
usdrub_df['close'].head(5),
|
||||
usdrub_df['close'].tail(5)
|
||||
])
|
||||
usdrub_df
|
||||
|
||||
|
||||
# %% Calculate Return ----
|
||||
def get_returns(close_prices) -> pd.Series:
|
||||
def calc_returns(close_prices: pd.Series) -> pd.Series:
|
||||
"""Calculate Investment Return"""
|
||||
return (close_prices/close_prices.shift()) - 1
|
||||
|
||||
|
||||
usdrub_df['diff'] = usdrub_df['close'].diff()
|
||||
usdrub_df['return'] = get_returns(usdrub_df['close'])
|
||||
usdrub_df['return'] = calc_returns(usdrub_df['close'])
|
||||
|
||||
usdrub_df[['close', 'diff', 'return']].tail(10)
|
||||
|
||||
|
||||
# %% Calculate LogReturn ----
|
||||
def get_log_returns(return_prices) -> pd.Series:
|
||||
def calc_log_returns(return_prices: pd.Series) -> pd.Series:
|
||||
"""Calculate Log Return"""
|
||||
return np.log(1 + return_prices)
|
||||
|
||||
usdrub_df['log_return'] = usdrub_df['return'].apply(lambda x: get_log_returns(x))
|
||||
usdrub_df['log_return'] = usdrub_df['return'].apply(lambda x: calc_log_returns(x))
|
||||
usdrub_df[['close', 'diff', 'return', 'log_return']].tail(10)
|
||||
|
||||
|
||||
# %% Simulate possible LogReturns ----
|
||||
|
||||
def get_simulated_returns(log_returns: pd.Series, n_days: int, n_iterations: int) -> pd.Series:
|
||||
def calc_simulated_returns(log_returns: pd.Series, n_days: int, n_iterations: int) -> pd.Series:
|
||||
"""Calculate Simulated Return"""
|
||||
|
||||
u = log_returns.mean()
|
||||
var = log_returns.var()
|
||||
stdev = log_returns.std()
|
||||
@ -119,7 +119,7 @@ def get_simulated_returns(log_returns: pd.Series, n_days: int, n_iterations: int
|
||||
return np.exp(drift + stdev*Z)
|
||||
|
||||
|
||||
usdrub_simulated_returns = get_simulated_returns(
|
||||
usdrub_simulated_returns = calc_simulated_returns(
|
||||
usdrub_df['log_return'].dropna(),
|
||||
n_days,
|
||||
n_simulations)
|
||||
@ -140,9 +140,9 @@ def get_breakeven_prob(pred, risk_free_rate: float = 0.02) -> pd.Series:
|
||||
"""
|
||||
|
||||
init_pred = pred.iloc[0, 0]
|
||||
pred = pred.iloc[-1]
|
||||
|
||||
pred_list = list(pred)
|
||||
last_pred = pred.iloc[-1]
|
||||
pred_list = list(last_pred)
|
||||
|
||||
over = [(p*100)/init_pred for p in pred_list if ((p-init_pred)*100)/init_pred >= risk_free_rate]
|
||||
less = [(p*100)/init_pred for p in pred_list if ((p-init_pred)*100)/init_pred < risk_free_rate]
|
||||
@ -150,7 +150,7 @@ def get_breakeven_prob(pred, risk_free_rate: float = 0.02) -> pd.Series:
|
||||
return len(over)/(len(over) + len(less))
|
||||
|
||||
|
||||
def evaluate_simulation(simulated_returns: pd.Series, last_actual_price: float, n_days: int, plot = True) -> pd.DataFrame:
|
||||
def evaluate_simulation(simulated_returns: pd.Series, last_actual_price: float, n_days: int, plot: bool = True) -> pd.DataFrame:
|
||||
"""
|
||||
Evaluate Monte-Carlo simulations result
|
||||
"""
|
||||
@ -211,9 +211,9 @@ quotes_data = [quotes_df.query('symbol == @s') for s in quotes_df.symbol.unique(
|
||||
symbols_list = [df.symbol.unique() for df in quotes_data]
|
||||
|
||||
# 2. simulate
|
||||
returns_data = [get_returns(df['close']) for df in quotes_data]
|
||||
log_returns_data = [get_log_returns(r) for r in returns_data]
|
||||
simulated_returns_data = [get_simulated_returns(lr, n_days, n_simulations) for lr in log_returns_data]
|
||||
returns_data = [calc_returns(df['close']) for df in quotes_data]
|
||||
log_returns_data = [calc_log_returns(r) for r in returns_data]
|
||||
simulated_returns_data = [calc_simulated_returns(lr, n_days, n_simulations) for lr in log_returns_data]
|
||||
|
||||
assert(
|
||||
len(quotes_data) > 0
|
||||
|
Loading…
Reference in New Issue
Block a user