Remove redundant

This commit is contained in:
codez0mb1e 2022-10-22 09:25:59 +00:00
parent 5c6ea177dd
commit 37ec6bef93
2 changed files with 0 additions and 216 deletions

View File

@ -1,66 +0,0 @@
# %% Import dependencies ----
from dataclasses import dataclass
from typing import Dict, Any
from sqlalchemy import create_engine, inspect
import pandas as pd
import urllib
# %% Models
@dataclass(frozen=True)
class ConnectionSettings:
"""Connection Settings"""
server: str
database: str
username: str
password: str
driver: str = '{ODBC Driver 18 for SQL Server}'
timeout: int = 30
# %% Connection
class AzureDbConnection:
"""Azure SQL database connection."""
def __init__(self, conn_settings: ConnectionSettings, echo: bool = False) -> None:
conn_params = urllib.parse.quote_plus(
'Driver=%s;' % conn_settings.driver +
'Server=tcp:%s.database.windows.net,1433;' % conn_settings.server +
'Database=%s;' % conn_settings.database +
'Uid=%s;' % conn_settings.username +
'Pwd=%s;' % conn_settings.password +
'Encrypt=yes;' +
'TrustServerCertificate=no;' +
'Connection Timeout=%s;' % conn_settings.timeout
)
conn_string = f'mssql+pyodbc:///?odbc_connect={conn_params}'
self._db = create_engine(conn_string, echo=echo)
def connect(self) -> None:
"""Estimate connection"""
self._conn = self._db.connect()
def get_tables(self) -> list[str]:
"""Get list of tables"""
inspector = inspect(self._db)
return [t for t in inspector.get_table_names()]
def insert(self, inserted_data: pd.DataFrame, target_table: str, db_mapping: Dict[str, Any], chunksize: int = 10000) -> None:
inserted_data.to_sql(
con=self._db,
schema='dbo',
name=target_table,
if_exists='append', # or replace
index=False,
chunksize=chunksize,
dtype=db_mapping
)
def dispose(self) -> None:
"""Dispose opened connections"""
self._conn.close()
self._db.dispose()

View File

@ -1,150 +0,0 @@
#!/usr/bin/python3
"""
Data source: https://www.kaggle.com/datasets/tencars/392-crypto-currency-pairs-at-minute-resolution
"""
# %%
import os
import numpy as np
import pandas as pd
from sqlalchemy import types
from azure import AzureDbConnection, ConnectionSettings
# %%
# In terminal:
#> kaggle -v # must be >1.15
#> mkdir data; cd data
#> kaggle datasets download tencars/392-crypto-currency-pairs-at-minute-resolution
#> unzip 392-crypto-currency-pairs-at-minute-resolution.zip
input_dir: str = "../data"
# Get names and number of available currency pairs
pair_names = [x[:-4] for x in os.listdir(input_dir)]
usd_pairs = [s for s in pair_names if "usd" in s]
# Print the first 50 currency pair names
print(f"These are the first 10 out of {len(usd_pairs)} currency pairs in the dataset:")
print(usd_pairs[0:10])
# %%
def load_data(symbol: str, input_dir: str) -> pd.DataFrame:
path_name = input_dir + "/" + symbol + ".csv"
# Load data
df = pd.read_csv(path_name, index_col='time', dtype={'open': np.float64, 'high': np.float64, 'low': np.float64, 'close': np.float64, 'volume': np.float64})
df.index = pd.to_datetime(df.index, unit='ms')
df = df[~df.index.duplicated(keep='first')]
# As mentioned in the description, bins without any change are not recorded.
# We have to fill these gaps by filling them with the last value until a change occurs.
#df = df.resample('1T').pad()
return df[['open', 'high', 'low', 'close', 'volume']]
def calc_ohlcv_1h(df: pd.DataFrame) -> pd.DataFrame:
df['hour'] = df.index.to_period('H')
return (
df
.groupby(['hour'])
.agg(
{
'open': 'first',
'high': max,
'low': min,
'close': 'last',
'volume': sum,
#'time': max
}
)
.reset_index()
)
# %% ----
ethusd_1m = load_data("ethusd", input_dir)
ethusd_1h = calc_ohlcv_1h(ethusd_1m)
ethusd_1h.tail()
# %% ----
conn_settings = ConnectionSettings(
'<server_name>',
'<db_name>',
'<user_name>',
'****'
)
db_conn = AzureDbConnection(conn_settings)
db_conn.connect()
for t in db_conn.get_tables():
print(t)
# %%
db_mapping = {
'FIGI': types.CHAR(length=12),
'open': types.DECIMAL(precision=19, scale=9),
'high': types.DECIMAL(precision=19, scale=9),
'close': types.DECIMAL(precision=19, scale=9),
'low': types.DECIMAL(precision=19, scale=9),
'volume': types.DECIMAL(precision=19, scale=9),
'time': types.DATETIME(),
'source_id': types.SMALLINT(),
'version': types.VARCHAR(length=12),
'interval': types.CHAR(length=2)
}
# %%
pd.options.mode.chained_assignment = None
min_candels_n = 10000
i = 1
for pair in usd_pairs:
print(f'INFO | {pair} > Starting read dataset...')
candles_df = load_data(pair, input_dir)
if len(candles_df) > min_candels_n:
df = candles_df.loc[:'2022-10-01']
if len(df) > 0:
df = calc_ohlcv_1h(df)
df['FIGI'] = pair
df['time'] = df.hour.apply(lambda h: h.to_timestamp())
df['source_id'] = 1
df['version'] = 'v20221001'
df['interval'] = '1H'
df.drop(columns='hour', inplace=True)
print(f'INFO | {pair} > Starting insert to DB ({i} of {len(usd_pairs)})...')
print('DEBUG | {} rows from {} to {}'.format(df.shape[0], min(df['time']), max(df['time'])))
try:
db_conn.insert(df, 'crypto_1h', db_mapping)
except Exception as ex:
print(f'ERROR | {pair} > {ex}')
else:
print(f'WARN | {pair} > No new records')
else:
print(f'WARN | {pair} > Only {candles_df.shape[0]} records')
i += 1
# %%
db_conn.dispose()