mirror of
https://github.com/codez0mb1e/resistance.git
synced 2025-01-08 01:01:52 +00:00
Update parser
This commit is contained in:
parent
aa7d45380b
commit
3882efc9a2
@ -1,42 +1,41 @@
|
||||
#!/usr/bin/python3
|
||||
|
||||
"""
|
||||
Data source: https://www.kaggle.com/code/tencars/bitfinexdataset
|
||||
Data source: https://www.kaggle.com/datasets/tencars/392-crypto-currency-pairs-at-minute-resolution
|
||||
"""
|
||||
|
||||
# %%
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sqlalchemy import types
|
||||
|
||||
from azure import AzureDbConnection, ConnectionSettings
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
#> ~/apps/resistance/data
|
||||
# In terminal:
|
||||
#> kaggle -v # must be >1.15
|
||||
#> mkdir data; cd data
|
||||
#> kaggle datasets download tencars/392-crypto-currency-pairs-at-minute-resolution
|
||||
#> unzip 392-crypto-currency-pairs-at-minute-resolution.zip
|
||||
|
||||
input_path = "../data"
|
||||
input_dir = "../data"
|
||||
|
||||
# Get names and number of available currency pairs
|
||||
pair_names = [x[:-4] for x in os.listdir(input_path)]
|
||||
n_pairs = len(pair_names)
|
||||
pair_names = [x[:-4] for x in os.listdir(input_dir)]
|
||||
usd_pairs = [s for s in pair_names if "usd" in s]
|
||||
|
||||
# Print the first 50 currency pair names
|
||||
print("These are the first 50 out of {} currency pairs in the dataset:".format(n_pairs))
|
||||
print(pair_names[0:50])
|
||||
|
||||
usd_pairs = [s for s in pair_names if "usd" in s]
|
||||
print(usd_pairs)
|
||||
print(f"These are the first 10 out of {len(usd_pairs)} currency pairs in the dataset:")
|
||||
print(usd_pairs[0:10])
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def load_data(symbol, source=input_path):
|
||||
path_name = source + "/" + symbol + ".csv"
|
||||
def load_data(symbol: str, input_dir: str) -> pd.DataFrame:
|
||||
path_name = input_dir + "/" + symbol + ".csv"
|
||||
|
||||
# Load data
|
||||
df = pd.read_csv(path_name, index_col='time', dtype={'open': np.float64, 'high': np.float64, 'low': np.float64, 'close': np.float64, 'volume': np.float64})
|
||||
@ -50,23 +49,50 @@ def load_data(symbol, source=input_path):
|
||||
return df[['open', 'high', 'low', 'close', 'volume']]
|
||||
|
||||
|
||||
def calc_ohlcv_1h(df: pd.DataFrame) -> pd.DataFrame:
|
||||
df['hour'] = df.index.to_period('H')
|
||||
|
||||
return (
|
||||
df
|
||||
.groupby(['hour'])
|
||||
.agg(
|
||||
{
|
||||
'open': 'first',
|
||||
'high': max,
|
||||
'low': min,
|
||||
'close': 'last',
|
||||
'volume': sum,
|
||||
#'time': max
|
||||
}
|
||||
)
|
||||
.reset_index()
|
||||
)
|
||||
|
||||
|
||||
# %% ----
|
||||
sample_df = load_data("ethusd")
|
||||
sample_df
|
||||
ethusd_1m = load_data("ethusd", input_dir)
|
||||
ethusd_1h = calc_ohlcv_1h(ethusd_1m)
|
||||
|
||||
ethusd_1h.tail()
|
||||
|
||||
|
||||
|
||||
# %% ----
|
||||
db_conn = AzureDbConnection(conn_settings)
|
||||
conn_settings = ConnectionSettings(
|
||||
'datainstinct',
|
||||
'market-data-db',
|
||||
'demo',
|
||||
'0test_test_AND_test'
|
||||
)
|
||||
|
||||
db_conn = AzureDbConnection(conn_settings)
|
||||
db_conn.connect()
|
||||
|
||||
for t in db_conn.get_tables():
|
||||
print(t)
|
||||
|
||||
|
||||
# %%
|
||||
min_candels_n = 10000
|
||||
|
||||
db_mapping = {
|
||||
'FIGI': types.CHAR(length=12),
|
||||
'open': types.DECIMAL(precision=19, scale=9),
|
||||
@ -75,28 +101,43 @@ db_mapping = {
|
||||
'low': types.DECIMAL(precision=19, scale=9),
|
||||
'volume': types.DECIMAL(precision=19, scale=9),
|
||||
'time': types.DATETIME(),
|
||||
'source_id': types.SMALLINT,
|
||||
'source_id': types.SMALLINT(),
|
||||
'version': types.VARCHAR(length=12),
|
||||
'interval': types.CHAR(length=2)
|
||||
}
|
||||
|
||||
|
||||
# %%
|
||||
pd.options.mode.chained_assignment = None
|
||||
|
||||
min_candels_n = 10000
|
||||
|
||||
for pair in usd_pairs:
|
||||
print(f'Starting read {pair}...')
|
||||
candles_df = load_data(pair)
|
||||
print(f'INFO | {pair} > Starting read dataset...')
|
||||
|
||||
candles_df['FIGI'] = pair
|
||||
candles_df['time'] = candles_df.index
|
||||
candles_df['source_id'] = 128
|
||||
candles_df['version'] = 'v202206'
|
||||
candles_df['interval'] = '1M'
|
||||
candles_df = load_data(pair, input_dir)
|
||||
|
||||
if candles_df.shape[0] > min_candels_n:
|
||||
print('{} rows from {} to {}'.format(candles_df.shape[0], min(candles_df['time']), max(candles_df['time'])))
|
||||
if len(candles_df) > min_candels_n:
|
||||
|
||||
print(f'Starting insert {pair}...')
|
||||
db_conn.insert(candles_df, 'crypto', db_mapping)
|
||||
df = candles_df.loc['2022-07-01':'2022-10-01']
|
||||
|
||||
if len(df) > 0:
|
||||
df = calc_ohlcv_1h(df)
|
||||
|
||||
df['FIGI'] = pair
|
||||
df['time'] = df.hour.apply(lambda h: h.to_timestamp())
|
||||
df['source_id'] = 1
|
||||
df['version'] = 'v20221001'
|
||||
df['interval'] = '1H'
|
||||
df.drop(columns='hour', inplace=True)
|
||||
|
||||
print(f'INFO | {pair} > Starting insert to DB...')
|
||||
print('DEBUG | {} rows from {} to {}'.format(df.shape[0], min(df['time']), max(df['time'])))
|
||||
db_conn.insert(df, 'crypto', db_mapping)
|
||||
else:
|
||||
print(f'WARN | {pair} > No new records')
|
||||
else:
|
||||
print(f'WARN: {pair} has only {candles_df.shape[0]} records')
|
||||
print(f'WARN | {pair} > Only {candles_df.shape[0]} records')
|
||||
|
||||
|
||||
# %%
|
||||
|
Loading…
Reference in New Issue
Block a user