Update parser

This commit is contained in:
codez0mb1e 2022-10-17 17:02:23 +00:00
parent aa7d45380b
commit 3882efc9a2

View File

@ -1,42 +1,41 @@
#!/usr/bin/python3
"""
Data source: https://www.kaggle.com/code/tencars/bitfinexdataset
Data source: https://www.kaggle.com/datasets/tencars/392-crypto-currency-pairs-at-minute-resolution
"""
# %%
import os
import numpy as np
import pandas as pd
from sqlalchemy import types
from azure import AzureDbConnection, ConnectionSettings
# %%
#> ~/apps/resistance/data
# In terminal:
#> kaggle -v # must be >1.15
#> mkdir data; cd data
#> kaggle datasets download tencars/392-crypto-currency-pairs-at-minute-resolution
#> unzip 392-crypto-currency-pairs-at-minute-resolution.zip
input_path = "../data"
input_dir = "../data"
# Get names and number of available currency pairs
pair_names = [x[:-4] for x in os.listdir(input_path)]
n_pairs = len(pair_names)
pair_names = [x[:-4] for x in os.listdir(input_dir)]
usd_pairs = [s for s in pair_names if "usd" in s]
# Print the first 50 currency pair names
print("These are the first 50 out of {} currency pairs in the dataset:".format(n_pairs))
print(pair_names[0:50])
usd_pairs = [s for s in pair_names if "usd" in s]
print(usd_pairs)
print(f"These are the first 10 out of {len(usd_pairs)} currency pairs in the dataset:")
print(usd_pairs[0:10])
# %%
def load_data(symbol, source=input_path):
path_name = source + "/" + symbol + ".csv"
def load_data(symbol: str, input_dir: str) -> pd.DataFrame:
path_name = input_dir + "/" + symbol + ".csv"
# Load data
df = pd.read_csv(path_name, index_col='time', dtype={'open': np.float64, 'high': np.float64, 'low': np.float64, 'close': np.float64, 'volume': np.float64})
@ -50,23 +49,50 @@ def load_data(symbol, source=input_path):
return df[['open', 'high', 'low', 'close', 'volume']]
def calc_ohlcv_1h(df: pd.DataFrame) -> pd.DataFrame:
df['hour'] = df.index.to_period('H')
return (
df
.groupby(['hour'])
.agg(
{
'open': 'first',
'high': max,
'low': min,
'close': 'last',
'volume': sum,
#'time': max
}
)
.reset_index()
)
# %% ----
sample_df = load_data("ethusd")
sample_df
ethusd_1m = load_data("ethusd", input_dir)
ethusd_1h = calc_ohlcv_1h(ethusd_1m)
ethusd_1h.tail()
# %% ----
db_conn = AzureDbConnection(conn_settings)
conn_settings = ConnectionSettings(
'datainstinct',
'market-data-db',
'demo',
'0test_test_AND_test'
)
db_conn = AzureDbConnection(conn_settings)
db_conn.connect()
for t in db_conn.get_tables():
print(t)
# %%
min_candels_n = 10000
db_mapping = {
'FIGI': types.CHAR(length=12),
'open': types.DECIMAL(precision=19, scale=9),
@ -75,28 +101,43 @@ db_mapping = {
'low': types.DECIMAL(precision=19, scale=9),
'volume': types.DECIMAL(precision=19, scale=9),
'time': types.DATETIME(),
'source_id': types.SMALLINT,
'source_id': types.SMALLINT(),
'version': types.VARCHAR(length=12),
'interval': types.CHAR(length=2)
}
# %%
pd.options.mode.chained_assignment = None
min_candels_n = 10000
for pair in usd_pairs:
print(f'Starting read {pair}...')
candles_df = load_data(pair)
print(f'INFO | {pair} > Starting read dataset...')
candles_df['FIGI'] = pair
candles_df['time'] = candles_df.index
candles_df['source_id'] = 128
candles_df['version'] = 'v202206'
candles_df['interval'] = '1M'
candles_df = load_data(pair, input_dir)
if candles_df.shape[0] > min_candels_n:
print('{} rows from {} to {}'.format(candles_df.shape[0], min(candles_df['time']), max(candles_df['time'])))
if len(candles_df) > min_candels_n:
print(f'Starting insert {pair}...')
db_conn.insert(candles_df, 'crypto', db_mapping)
df = candles_df.loc['2022-07-01':'2022-10-01']
if len(df) > 0:
df = calc_ohlcv_1h(df)
df['FIGI'] = pair
df['time'] = df.hour.apply(lambda h: h.to_timestamp())
df['source_id'] = 1
df['version'] = 'v20221001'
df['interval'] = '1H'
df.drop(columns='hour', inplace=True)
print(f'INFO | {pair} > Starting insert to DB...')
print('DEBUG | {} rows from {} to {}'.format(df.shape[0], min(df['time']), max(df['time'])))
db_conn.insert(df, 'crypto', db_mapping)
else:
print(f'WARN | {pair} > No new records')
else:
print(f'WARN: {pair} has only {candles_df.shape[0]} records')
print(f'WARN | {pair} > Only {candles_df.shape[0]} records')
# %%