mirror of
https://github.com/codez0mb1e/resistance.git
synced 2025-01-05 07:41:50 +00:00
Ad currencies analysis
This commit is contained in:
parent
27f5d141db
commit
dfd136c380
193
src/fx_currencies_anlysis.Rmd
Executable file
193
src/fx_currencies_anlysis.Rmd
Executable file
@ -0,0 +1,193 @@
|
||||
---
|
||||
title: "Currencies Analysis"
|
||||
output: github_document
|
||||
---
|
||||
|
||||
```{r setup, include=FALSE}
|
||||
knitr::opts_chunk$set(echo = T, warning = F)
|
||||
```
|
||||
|
||||
***Analysis price of the my list of ~~the most promised cryptotokens~~ currencies.***
|
||||
|
||||
## Set envinroment :earth_asia:
|
||||
|
||||
`install.packages("azuremlsdk")`
|
||||
|
||||
```{r set_envinroment, message=FALSE}
|
||||
library(dplyr)
|
||||
library(tidyr)
|
||||
|
||||
library(lubridate)
|
||||
library(stringr)
|
||||
|
||||
library(gt)
|
||||
library(tidyverse)
|
||||
library(glue)
|
||||
|
||||
library(ggplot2)
|
||||
|
||||
library(azuremlsdk)
|
||||
|
||||
## set params
|
||||
.azureml_dataset_name <- "Currencies"
|
||||
|
||||
## connect to Azure ML workspace
|
||||
ws <- azuremlsdk::load_workspace_from_config()
|
||||
sprintf(
|
||||
"%s workspace located in %s region",ws$name, ws$location
|
||||
)
|
||||
|
||||
```
|
||||
## Load dataset
|
||||
|
||||
|
||||
```{r get_azure_dataset}
|
||||
currencies_ds <- azuremlsdk::get_dataset_by_name(ws, name = .azureml_dataset_name)
|
||||
currencies_ds$name
|
||||
currencies_ds$description
|
||||
```
|
||||
|
||||
```{r prepare_dataframe}
|
||||
quotes_df <- currencies_ds$to_pandas_dataframe()
|
||||
|
||||
# ~ 20 years, 150 currencies and 1.5M rows
|
||||
|
||||
quotes_df %>%
|
||||
filter(slug == "USD/RUB") %>%
|
||||
select(-slug) %>%
|
||||
top_n(10) %>%
|
||||
|
||||
gt() %>%
|
||||
tab_header(
|
||||
title = "USD/RUB Rate",
|
||||
subtitle = glue("{min(quotes_df$date)} to {max(quotes_df$date)}")
|
||||
) %>%
|
||||
fmt_date(
|
||||
columns = date,
|
||||
date_style = 6
|
||||
) %>%
|
||||
fmt_number(
|
||||
columns = c(open, high, low, close)
|
||||
)
|
||||
```
|
||||
|
||||
```{r preprocessing}
|
||||
quotes_df %<>%
|
||||
transmute(
|
||||
symbol = slug,
|
||||
price = close,
|
||||
date
|
||||
) %>%
|
||||
|
||||
filter(
|
||||
str_detect(symbol, "USD/") &
|
||||
date > max(date) - lubridate::years(10)
|
||||
) %>%
|
||||
|
||||
filter(!(symbol == "USD/RUB" & price < 1)) %>%
|
||||
|
||||
arrange(date) %>%
|
||||
group_by(symbol) %>%
|
||||
|
||||
mutate(
|
||||
return = c(NA_real_, diff(price))/lag(price),
|
||||
log_return = log(1 + return)
|
||||
) %>%
|
||||
na.omit
|
||||
```
|
||||
|
||||
Base and quote currencies:
|
||||
|
||||
```{r discover}
|
||||
quotes_stats <- quotes_df %>%
|
||||
|
||||
summarise(
|
||||
max_price = max(price),
|
||||
min_price = min(price),
|
||||
last_price = last(price),
|
||||
max_min_rate = max(price)/min(price),
|
||||
volatility = sd(log_return)
|
||||
)
|
||||
|
||||
volatility_threshold <- quotes_stats %>% pull(volatility) %>% quantile(probs = .75)
|
||||
|
||||
|
||||
quotes_stats %>%
|
||||
filter(
|
||||
volatility <= volatility_threshold |
|
||||
symbol == "USD/RUB"
|
||||
) %>%
|
||||
mutate(
|
||||
`100x Volatility` = volatility*100
|
||||
) %>%
|
||||
arrange(volatility) %>%
|
||||
select(-volatility) %>%
|
||||
|
||||
gt() %>%
|
||||
tab_header(
|
||||
title = "Least Volatility Currencies",
|
||||
subtitle = glue("{min(quotes_df$date)} to {max(quotes_df$date)}")
|
||||
) %>%
|
||||
fmt_number(
|
||||
columns = c(max_price, min_price, max_min_rate, `100x Volatility`)
|
||||
)
|
||||
```
|
||||
My broker available pairs:
|
||||
|
||||
```{r}
|
||||
symbols <- c(
|
||||
'RUB',
|
||||
'EUR', 'GBP', 'CHF', 'CNY', 'HKD', 'JPY', 'SEK', 'SGD', 'AUD',
|
||||
'KZT', 'BYN', 'TRY', 'MXN'
|
||||
)
|
||||
|
||||
quotes_stats %>%
|
||||
filter(
|
||||
symbol %in% str_c("USD", symbols, sep = "/")
|
||||
) %>%
|
||||
mutate(
|
||||
`100x Volatility` = volatility*100
|
||||
#risk = if_else(volatility > volatility_threshold, "High", "Medium or low", NA_character_)
|
||||
) %>%
|
||||
arrange(volatility) %>%
|
||||
select(-volatility) %>%
|
||||
|
||||
gt() %>%
|
||||
tab_header(
|
||||
title = "Least Volatility Currencies",
|
||||
subtitle = glue("{min(quotes_df$date)} to {max(quotes_df$date)}")
|
||||
) %>%
|
||||
fmt_number(
|
||||
columns = c(max_price, min_price, max_min_rate, `100x Volatility`)
|
||||
)
|
||||
|
||||
```
|
||||
Plot exchange rate for out favorites:
|
||||
|
||||
```{r}
|
||||
|
||||
```
|
||||
|
||||
Define low risk symbols:
|
||||
|
||||
```{r}
|
||||
low_risk_symbols <- quotes_stats %>%
|
||||
filter(
|
||||
symbol %in% str_c("USD", symbols, sep = "/")
|
||||
) %>%
|
||||
filter(
|
||||
volatility <= volatility_threshold |
|
||||
symbol == "USD/RUB"
|
||||
) %>%
|
||||
pull(symbol) %>%
|
||||
unique
|
||||
|
||||
cat(
|
||||
sprintf(
|
||||
"['%s']",
|
||||
paste(low_risk_symbols, collapse = "', '")
|
||||
))
|
||||
```
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user